
Flexible Aggregation Functions
Alchemer Dashboard is currently waitlist only. Alchemer Dashboard is currently waitlist only. Visit this pageVisit this page to learn more about Dashboard to learn more about Dashboard
or join the waitlist!or join the waitlist!

How Aggregation Formulas Work
Typically, the groupings and filters used in a formula use the same fields as columns returned in
the search results. The concept of a grouping equates to an attribute column.

For example, in the search revenue ship mode , revenue is the measure, and ship mode is the
attribute, or grouping. The result of this search shows total revenue for each ship mode:

revenuerevenue ship modeship mode

$ a air

$ r rail

$ t truck

$ s sea transport

The aggregation formulas are described in Overview of aggregate formulas.

About Flexible Aggregation
Alchemer Dashboard provides flexible aggregation with the group_* functions. You can
use group_* formulas when you want to specify columns and filters to include or ignore in your
query.

The group_* formulas use a sub-query to perform these custom aggregations. If the sub-query is
at a different level of detail than the original query, Alchemer Dashboard adds the result column
to the result of the original query.

To use the groups and filters, specify them using the query_groups and query_filters keywords,
respectively. You can also add or exclude groups or filters.

Best Practices for Flexible Aggregations
The group_aggregate function enables you to calculate a result at a specific aggregation level, and
then returns it at a different aggregation level. For this reaggregation result to return correctly,
follow these syntax guidelines:

https://www.alchemer.com/dashboard/
http://help.alchemer.com/help/overview-of-aggregate-formulas
https://docs.thoughtspot.com/cloud/10.6.0.cl/formulas-aggregation-flexible#groupagg-filters-enhancement

Wrap group_aggregate in an aggregate function, such as sum or average

The wrapping function must be the immediate preceding function, such
as sum(group_aggregate(...))

Examples
For a search on revenue monthly ship mode , you can add a formula to calculate yearly revenue by
ship mode:

group_aggregate(sum(revenue), {ship mode, year(commit date)}, {})

The same formula can also be written using query_groups() and query_filters() as following:

group_aggregate(sum(revenue), query_groups() - {commit date} + {year(commit date)}, {})

This is helpful to include the main query groups that are not known at formula creation time. You
can use +/- to modify the set of groups included from the query.

Groups and filters
Flexible group aggregate formulas allow for flexibility in both groupings and filters. The formulas
give you the ability to specify only groupings or only filters.

Query groups
With query_groups()+ {attribute_column} or query_groups()-{attribute_column} , you can aggregate
results while including/excluding a column from the original search.

The query_groups() function returns all attribute columns defined in the base search, when the
table view is displayed.

Columns are not included in the query_groups() definition when a chart is displayed NON-
VISUALIZED.

If, for example, you use the condition query_groups() - {region, sku, name} , this changes the level of
detail for the group aggregate formula. In this scenario, region, sku, and name have been removed.
If these columns are not included in the base search, then this definition is ignored.

Under the new logic, the {region, sku, name} condition fixes the level of detail for the group
by columns to the columns defined.

You can combine options to both add and remove columns like in the following example:

query_groups()+ {region} - {sku, name} .

http://help.alchemer.com/help/grouping-functions
http://help.alchemer.com/help/aggregate-filters

Regarding dates, when query_groups() is defined, the date period defined in the search will be
passed into the group function. Assuming the search is monthlymonthly, then the group function will also
be at the monthly grain. You can use date functions to change the grain, such
as {start_of_year(transaction date)} .

Query Filters
With query_filters()+ {filter_condition} or query_filters()-{filter_condition} , you can aggregate the
results while including/excluding a filter condition.

Filter condition: Ship Mode='car'

For a search on Category Customer ID sales by customer id and category Ship Mode='car’ , you can add a
formula to calculate sales by category for each customer as:

sales by Customer ID and Category= group_aggregate (sum(Sales), {Category, Customer ID }, query_filters()+{Ship Mode='a
ir'})

In this case, the results will be aggregated based on the dimensions: ‘Category’ and ‘Customer
ID’ and filters: ‘air’ and ‘car’ .

With query_filters()-{column} , users will be able to aggregate the results while removing any
expression related to a column.

Filter condition: Ship Mode='car'

For a search on Customer ID sales by customer id and category Ship Mode='car' , you can add a formula
to calculate sales for each customer while ignoring the filter on a column as:

sales by Customer ID and Category= group_aggregate (sum(Sales), {Customer ID, Category }, query_filters()-{Ship Mode})

In this case, the results will be aggregated based on the dimensions in the search; Customer ID
and any filter related to Ship Mode will not be considered while aggregating the results.

Group aggregation filters enhancement
You can specify a column in the third argument of a group_aggregate function in order to include
all filters defined in the search that pertain to that column, and ignore unrelated filters. This
enhancement allows the analyst to specify which fields to accept filters from, improving
readability of formulas, and reducing operational change and related errors.

For example, say that you would like to determine how many stores a certain product was sold in
during a given time period, expressed as a ratio of total available stores. In order to calculate the
total available stores you require a group_aggregate function that will accept the filters associated
with transaction date (for example, this year, last six months, august), and ignore filters from other
fields.

Simply specify the formula as group_aggregate(count(storeid),query_groups, {date}) , and the formula

will automatically ignore all unrelated filters in the search bar.

Related Articles

