
Legacy - Migrating Alchemer
Mobile iOS Versions
Certain versions of our SDK break compatibility with older versions. If you are migrating from an
old version, please follow the migration guides below for each version between the version you
are using and the version you are migrating to.

v5.0.0
If you have integrated a previous version of the Alchemer Mobile SDK, you will need to keep in
mind the following changes in our version 5.0.0 release. For more information, please see our
Integration Reference.

New Asynchronous engage  Methods
The engage  methods no longer return a boolean value indicating whether an interaction was
presented in response to the event being engaged. Instead, there are versions of each method that
accept a completion handler that will be called with that result.

For example, where previously you might have done the following:

let didShowMessageCenter = Apptentive.shared.presentMessageCenter(from: self)

if !didShowMessageCenter {
    print("message center was not shown")
}

You would now write:

Apptentive.shared.presentMessageCenter(from: self.window!.rootViewController!) { (success) in
    if !success {
        print("message center was not shown")
    }
}

Likewise the canShowInteraction(forEvent:)  and canShowMessageCenter()  methods were replaced by
queryCanShowInteraction(forEvent:,completion:)  and queryCanShowMessageCenter(completion:) . For

example, to enable a Message Center button if Message Center is available, you could use code
like the following:

Apptentive.shared.queryCanShowMessageCenter { (canShow) in
    if canShow {
        // enable message center button
    }
}

http://help.alchemer.com/help/legacy-ios-integration-reference


New UNUserNotificationCenter  methods
You can use the User Notifications framework in your apps that target iOS 10 and later.

If your app does not use push or local notifications for purposes other than Alchemer Mobile, you
can simply set the current user notification center’s delegate property to the Alchemer Mobile
singleton:

UNUserNotificationCenter.current().delegate = Apptentive.shared

Alternative, if your app needs to respond to non-Alchemer Mobile push and local notifications, you
can forward them as follows:

func userNotificationCenter(_ center: UNUserNotificationCenter, didReceive response: UNNotificationRespons
e, withCompletionHandler completionHandler: @escaping () -> Void) {
    // Pass in a view controller, or nil to have Apptentive create a new window for Message Center
    let handledByApptentive = Apptentive.shared.didReceveUserNotificationResponse(response, from: viewCo
ntroller, withCompletionHandler: completionHandler)

    if (!handledByApptentive) {
        // Handle the notification
        completionHandler()
    }
}

func userNotificationCenter(_ center: UNUserNotificationCenter, willPresent notification: UNNotification, withC
ompletionHandler completionHandler: @escaping (UNNotificationPresentationOptions) -> Void) {
    let handledByApptentive = Apptentive.shared.willPresent(notification, withCompletionHandler: completion
Handler)

    if (!handledByApptentive) {
        // Decide how to present the notification
        completionHandler(.alert)
    }
}

Please note that in both cases you will still need to forward remote notifications to Alchemer
Mobile for Alchemer Mobile push to work.

v4.0.0
If you have integrated a previous version of the Alchemer Mobile SDK, you will need to keep in
mind the following changes in our version 4.0.0 release. For more information, please see our
Integration Reference.

Moved from Static Library to Dynamic
Framework
We still recommend integrating using CocoaPods. If you previously integrated using a static
library, it has been removed from the project and replaced with a dynamic framework.

http://help.alchemer.com/help/alchemer-mobile-ios-integration-reference


The easiest way to use this framework is by using Carthage.

New SDK Registration Process
In place of the a single API key, the SDK now uses a key and signature. These are available from
the same section of your Alchemer Mobile dashboard where you previously found your API key.
You use these to create an instance of the new ApptentiveConfiguration class.

You should pass this configuration instance to the register(with:) class method on the Alchemer
Mobile class.

After that you can use the SDK as you normally would.

New Login/Logout Feature
A new logIn(withToken:completion:) method has been added, along with a corresponding logOut
method. These allow multiple users to use the same app instance without being exposed to one
another's messages and custom data.

The logIn method takes a JSON Web Token that you can generate on your server when a user
authenticates using your app. The JWT signing secret for your app can be found in the same
section of your Alchemer Mobile dashboard as the key and signature.

You should also set the authenticationFailureCallback property on the Alchemer Mobile singleton
so that your app can be notified and reauthenticate in case the token is revoked or has expired.

Runtime Log Level Setting
You can now set the log level at runtime. The easiest way to do this is to set the logLevel property
on the configuration object before you register the SDK. The setting defaults to INFO for all build
configurations.

You can also set the logLevel property directly on the Alchemer Mobile singleton after you have
registered the SDK.

Local Notification Forwarding for Push
Notifications
To support multiple users without exposing potentially sensitive messages in notifications, the
SDK uses a two step process to implement push notifications. A silent push is sent from the
server, and if the intended recipient is logged in, a local notification is posted.

When the user responds to this local notification, your app should forward it to the Alchemer
Mobile SDK using the new didReceiveLocalNotification(_:from:) method. The first parameter is the
local notification passed into your app delegate’s application(_ application:didReceive:) method
(which your app delegate must implement), and the second is a view controller suitable for
presenting the Message Center view controller from.



v3.0.0
If you have integrated a previous version of the Alchemer Mobile SDK, you will need to keep in
mind the following changes in our version 3.0.0 release. For more information, please see our
Integration Reference.

Major Changes
Survey Redesign
The surveys provided by the Alchemer Mobile SDK have been extensively redesigned, although
their functionality remains the same.

Style Sheet Has Been added
A new style sheet property has been added to the Apptentive  singleton that greatly expands
your ability to customize the Alchemer Mobile UI. You can use the default ApptentiveStyleSheet
instance, or create your own, either by subclassing or by implementing the ApptentiveStyle
protocol.

Currently the style sheet is used to apply styles to Surveys and the Message Center.

You will need to import the ApptentiveStyleSheet.h  file if you would like to use the built-in styles
and you are integrating via source or using the static library.

You can find more information in our iOS Interface Customization guide.

Renamed Classes and Constants
To avoid a namespace collision with a private iOS system framework, classes that previously used
an AT  prefix now use an Apptentive  prefix. Additionally ATConnect  has been renamed to
simply Apptentive . Compatibility aliases have been added for the ATConnect  and
ATNavigationController  classes.

Additionally a number of constants have had their names change from using an AT  prefix to
using an Apptentive  prefix. The push provider and notification names are most likely to require
updating in your code.

Renamed APIKey Property
The previous apiKey  property has been renamed to APIKey  to better follow Apple’s naming
convention. The previous capitalization is provided for compatibility, but has been deprecated.

v2.0.0

Major Changes

http://help.alchemer.com/help/alchemer-mobile-ios-integration-reference
http://help.alchemer.com/help/legacy-ios-sdk-interface-customization


iOS Version Support
Alchemer Mobile SDK version 2.0.0 has a deployment target of iOS 7.0, which will support iOS 7,
8, and 9. In the 2.0.0 release we have dropped support for iOS 5 and 6.

Message Center
Message Center has been completely redesigned to improve its appearance and performance.
Please ensure that the new Message Center UI displays properly in your app.

Message Center is still presented via the presentMessageCenterFromViewController:  method.

Feedback Dialog has been RemovedFeedback Dialog has been Removed
The Feedback Dialog one-way message tool has been removed in favor of simply displaying
Message Center.

In previous versions, people used the Feedback Dialog to submit their first message. Thereafter,
they were sent to Message Center to read replies or send additional feedback.

There was formerly an option to disable Message Center and onlyonly accept messages via the one-
way Feedback Dialog. This option has been removed.

Rather than using one-way messages via the Feedback Dialog, you should use a custom StatusStatus
MessageMessage in the Ratings Prompt Configuration to set proper expectations of reply.

Message Center is Retrieved from ServerMessage Center is Retrieved from Server
Message Center text is now sent to devices from the Alchemer Mobile backend. Much of this text
is editable on a per-app basis via your Alchemer Mobile dashboard. These remote strings allow
you to customize Message Center copy and localization at any point without issuing an app
update.

As a consequence, we the SDK will be unable to show Message Center until that device syncs at
least one time with the Alchemer Mobile servers. This sync should normally happen very quickly
after the very first launch of the app.

If the first sync has not yet occurred, Alchemer Mobile displays a “We’re attempting to connect”
message rather than the (unavailable) Message Center. This view will be seen only rarely in the
actual usage of your app, but do be aware that you may see it in development if you try to launch
Message Center immediately after a fresh install.

The new API method canShowMessageCenter  has been added to indicate whether Message
Center has been synced and can be displayed. If that method returns NO  you can, for example,
hide the Message Center button in your interface.

Name and Email Address Properties
The API for adding Name and Email Address details has been simplified.

Setting the user’s email and name using the new new personName  or personEmailAddress
properties on ATConnect  will send that information to our server, and it will display alongside

https://be.apptentive.com/apps/current/ratings_prompt/latest


messages that user sends in the Conversations View.

Please be aware that setting personName  or personEmailAddress  will immediately overwriteimmediately overwrite
anything the person had previously typed in those fields, so you might want to check their values
first. The person using your app will be given the opportunity to change those details. However,
setting the properties programmatically again will overwrite the user-inputted values.

We have also removed the initialUserName  and initialUserEmailAddress  properties to simplify
the API.

Push Notifications
The new method setPushNotificationIntegration:withDeviceToken:  has been added to add a
single Push Notification provider. To register for push notifications, call this method with one of the
enumerated ATPushProvider  values, plus the device token from
application:didRegisterForRemoteNotificationsWithDeviceToken .

In light of this new method, we have removed the legacy integration API methods:

addIntegration:withConfiguration:

addIntegration:withDeviceToken:

removeIntegration:

addApptentiveIntegrationWithDeviceToken:

addUrbanAirshipIntegrationWithDeviceToken:

addAmazonSNSIntegrationWithDeviceToken:

addParseIntegrationWithDeviceToken:

Alchemer Mobile Push Notifications will, if possible, now trigger a message fetch in the
background. To enable background fetch, several API and project changes are needed:

To enable Message Center background fetch, you should use the fetchCompletionHandler:

versions of didReceiveRemoteNotification:  on the App Delegate and on ATConnect .
To enable Message Center background fetch, your app must set Remote Notifications as a
valid Background Mode. This mode can be enabled in Xcode via your Target’s Capabilities
tab, or by adding the value remote-notification  as a UIBackgroundMode  in your app’s
Info.plist .

A BOOL  return type has been added to the ATConnect  didReceiveRemoteNotification:
methods. The return value indicates if the Push Notification was sent by Alchemer Mobile.
The completionHandler  block will be called by Alchemer Mobile when the message fetch is
completed. To ensure that messages can be retrieved, please do not call the
completionHandler  block yourself if the notification was sent by Alchemer Mobile.

If the Push Notification was notnot sent by Alchemer Mobile (formerly Apptentive), the parent
app is responsible for calling the completionHandler  block.

Removed Legacy Properties
We have removed the useMessageCenter , initiallyUseMessageCenter , and
initiallyHideBranding  properties from the API. Please make sure to update your code if you are

https://be.apptentive.com/apps/current/conversations


setting any of these properties.

Using Message Center and Hiding Branding are now set via the configuration on your Alchemer
Mobile dashboard.

Determining if Interactions will be Shown
The method willShowInteractionForEvent:  has been marked as deprecated and renamed to
canShowInteractionForEvent: . This terminology matches the new API method
canShowMessageCenter: .

v1.5.0
This version is no longer supported. Please remove your Alchemer Mobile integration and re-
integrate with the latest iOS Integration Reference.

Related Articles

http://help.alchemer.com/help/alchemer-mobile-ios-integration-reference

