
Alchemer Mobile iOS Integration
Reference
System Requirements
Alchemer Mobile (ApptentiveKit) is written entirely in Swift, but features that are not directly
available in Objective-C (due to the use of value types or generics) have Objective-C-friendly
wrappers.

The current version of Alchemer Mobile (ApptentiveKit) is primarily intended for use with UIKit-
based apps on iOS and iPadOS. Apps using SwiftUI may be able to make use of Alchemer Mobile
(ApptentiveKit), but currently can’t provide support for this use case.

Minimum Deployment Target: iOS 13.0
Minimum Xcode Version: 13.0
No external dependencies required

SDK Size
The SDK is estimated to add approximately 2.3MB to the size of your app.

Supported Languages
We have translated all hard-coded strings in our SDK into the following languages. The content of
all Interactions comes from our server, and you may translate the text for each Interaction by
visiting the Translations Page.

Please note that you must also specify the target language in your Xcode project by selecting the
project, clicking Info, and then, under Localizations, click the Add button for the desired language.

Locale QualifierLocale Qualifier Language NameLanguage Name

None English

ar Arabic

el Greek

da Danish

de German

es Spanish

fr French

https://be.apptentive.com/apps/current/settings/translation

fr-CA French Canadian

it Italian

ja Japanese

ko Korean

nl Dutch

pl Polish

pt-BR Brazilian Portuguese

ru Russian

sv Swedish

tr Turkish

zh-Hant Chinese (Traditional)

zh-Hans Chinese (Simplified)

Locale QualifierLocale Qualifier Language NameLanguage Name

Adding Alchemer Mobile (ApptentiveKit)
There are several ways to add the Alchemer Mobile (ApptentiveKit) dependency to your app. We
recommend using Swift Package Manager.

Swift Package Manager
In Xcode, choose Add Packages… from the File menu, and enter
https://github.com/apptentive/apptentive-kit-ios in the search field.

Select the apptentive-kit-ios package from the list. We recommend using the “Up to Next Minor
Version” dependency rule to make it easy to update to the latest fully-compatible release of the
SDK. When you are finished, click Add Package.

CocoaPods
If you are using CocoaPods to manage your project’s dependencies, add the following line for your
app target in your Podfile:

pod 'ApptentiveKit', '~>6.5'

We recommend the above version specifier to make it easy to update to the latest fully-
compatible release of the SDK.

If you were previously using the apptentive-ios pod, be sure to remove it.

Carthage
If you are using Carthage to manage your project’s dependency,

11.. Add github "apptentive/apptentive-kit-ios" ~> 6.5 to your Cartfile. We recommend this version
specifier to make it easy to update to the latest fully-compatible release.

22.. Run carthage update --use-xcframeworks .

33.. On your application targets’ General settings tab, in the Frameworks, Libraries, and Embedded
Content section, drag and drop the Apptentive.xcframework folder from the Carthage/Build
folder on disk.

XCFramework
You can download the latest release as a pre-built framework from our Github releases page and
drag it into your project. This requires that you manually download any new releases of Alchemer
Mobile (ApptentiveKit) to keep your project up to date.

Sub-Project
You can also clone the ApptentiveKit repository and drag the ApptentiveKit.xcodeproj file into your
project in Xcode. This requires that you manually pull any new code from the Alchemer Mobile
(ApptentiveKit) repository to keep your project up to date.

Updating Alchemer Mobile (ApptentiveKit)
Please refer to our Release Notes for information on the latest version. We recommend using our
latest version whenever possible.

Depending on how you originally configured your dependency, you may have to edit the
dependency before your dependency manager will allow the update.

https://github.com/apptentive/apptentive-kit-ios/releases
https://github.com/apptentive/apptentive-kit-ios
http://help.alchemer.com/help/alchemer-mobile-ios-sdk-release-notes
https://learn.apptentive.com/knowledge-base/apptentive-kit-ios-release-notes/

Swift Package Manager
In Xcode, select your project in the Project Navigator, select the project in the editor sidebar, and
select the Package Dependencies tab.

If your update settings will allow an update, you can right-click the Alchemer Mobile
(ApptentiveKit) package and choose Update PackageUpdate Package.

If your update settings will not allow an update, double-click the Alchemer Mobile (ApptentiveKit)
package and set the minimum version to the version you’d like to update to, and consider changing
the dropdown to Up to Next MinorUp to Next Minor , which will allow you to more easily receive updates for bug
fixes and non-breaking changes.

CocoaPods
If your Podfile is configured to allow an update, you can run pod update 'ApptentiveKit' in the same
directory as your Podfile.

If your Podfile is not configured to allow an update, edit the line for the Alchemer Mobile
(ApptentiveKit) pod with the version you would like to update to. We recommend a setting like
'~>6.5' which will allow you to more easily receive updates for bug fixes and non-breaking

changes. You can then run pod update 'ApptentiveKit' as described above.

Carthage
If your Cartfile is configured to allow an update, run carthage update ApptentiveKit --use-xcframeworks
from the same directory as your Cartfile.

If your Cartfile is not configured to allow an update, edit the line for the Alchemer Mobile
(ApptentiveKit) framework with the version you would like to update to. We recommend a setting
like '~>6.5' which will allow you to more easily receive updates for bug fixes and non-breaking
changes. You can then run carthage update ApptentiveKit --use-xcframeworks as described above.

XCFramework
If you integrate via our pre-built XCFramework, you will have to manually download the latest
framework from our Github releases page to replace the one included in your project.

Sub-Project
If you integrate Alchemer Mobile (ApptentiveKit) as a subproject, you will have to manually pull or
download the latest release from our GitHub repository.

Import Alchemer Mobile (ApptentiveKit)
Swift
Add import ApptentiveKit to each Swift file where you plan to reference Alchemer Mobile methods
and properties (typically where you would also import the UIKit or Foundation frameworks).

https://github.com/apptentive/apptentive-kit-ios/releases

Objective-C
Add @import ApptentiveKit; to each implementation file where you plan to reference Alchemer
Mobile (ApptentiveKit) methods and properties (typically where you would import its
corresponding header file).

Initialize the SDK
Early in your app’s lifecycle, it should call Alchemer Mobile's register(with:completion:) method. For
example:

import UIKit
import ApptentiveKit

class AppDelegate: UIResponder, UIApplicationDelegate {

 func application(_ application: UIApplication, didFinishLaunchingWithOptions launchOptions: [UIApplicationL
aunchOptionsKey: Any]?) -> Bool {
 Apptentive.shared.register(with: .init(key: "<#Your Apptentive App Key#>", signature: "<#Your Apptentiv
e App Signature#>"))

 // Set the log level to debug Apptentive
 ApptentiveLogger.default.logLevel = .debug

 // Other app initialization...

 return true
 }
}

NOTE:NOTE: The easiest way to get started with Alchemer Mobile (ApptentiveKit) is to use the
shared instance of the Apptentive class (Apptentive.shared) to call its methods and access its
properties. If you prefer, you can also explicitly create an instance of the Apptentive class
(let myApptentiveInstance = Apptentive()) and manage the process of passing it to the places in
your app that it will be used. In this case your app must never access the shared static
property of the Apptentive class. Doing so will result in an assertion failure in debug builds
and unpredictable behavior in release builds.

Engage Events
Events record user interaction. You can use them to determine if and when an Interaction will be
shown to your customer. You will use these Events later to target Interactions, and to determine
whether an Interaction can be shown. You trigger an Event with the engage(event:from:) method.
This will record the Event, and then check to see if any Interactions targeted to that Event are
allowed to be displayed, based on the logic you set up in the Alchemer Mobile Dashboard.

One good place to engage an event is when a view controller appears, for example in the view
controller’s viewDidAppear(_:) method:

override func viewDidAppear(animated: Bool) {
 super.viewDidAppear(animated)

 // Engage the "viewed_list" event.
 Apptentive.shared.engage(event: "viewed_list", from: self)
}

Another good place to engage events is from the action methods in your view controllers:

@IBAction func likeArticle(_ sender: AnyObject?) {
 // ...

 // Engage the "liked_article" event.
 Apptentive.shared.engage(event: "liked_article", from: self)
}

If you want to engage an event when a modal view is dismissed, you will want to call the engage
method in the completion block, and pass the presenting view controller as the from parameter:

@IBAction func save(_ sender: AnyObject?) {
 // save the item...

 self.dismiss(animated: true) {
 // Engage the "saved_item" event.
 Apptentive.shared.engage(event: "saved_item", from: self.presentingViewController)
 }
}

This ensures that the view controller you pass in will still be visible if the event you engage
results in an interaction being displayed.

Finally, you can engage an event when your app encounters an error:

do {
 try context.save()
} catch let error as NSError {
 print("Error saving context: \(error)")

 // Engage the "core_data_save_failed" event.
 Apptentive.shared.engage(event: "core_data_save_failed", from: self)
}

This may allow you to let users know if there is a workaround or app update that fixes the
problem.

Using a Variable as the Event Name
The engage(event:from:) method accepts an Event object as its first argument (the Event object
conforms to the ExpressibleByStringLiteral protocol, so in most cases you can treat events as
strings). If you are passing a non-literal string, you will have to wrap it in an Event object:

engage(event: .init(name: myEventName), from: self)

We recommend that your app engage at least 10 distinct Events. This gives you the flexibility to
choose the best place for Interactions to display after your app is live, without having to update
your app.

Our web dashboard works best for up to several dozen unique event names. It does not work well
if you auto-generate thousands of unique event names. If you plan to target users based on
viewing a piece of content out of a collection of hundreds or thousands (say, SKUs in an online
retail app), do not create event names for each piece of content. Instead, you can use Custom
Person Data for item viewed.

For example, you could set a key of viewed_item with a value 123456. You could then target users
for whom that key matches, or is not null.

Monitoring Events
The SDK will post a notification (Notification.Name.apptentiveEventEngaged) to the default
NotificationCenter when an event is engaged, whether the source of that event is your app or the

SDK itself.

Your app can listen to this notification and then examine the values in the userInfo dictionary for
the following keys:

eventType : the extended name of the event, for example com.apptentive#Survey#submit
interactionType : the type of the interaction that engaged the event, or app if not applicable
interactionID : the internal identifier of the interaction that engaged the event, if applicable
eventSource : the source of the event, either com.apptentive (for events that are engaged by

the SDK itself) or local.app (for events that are engaged by your app)

List of Internal Events
com.apptentive#<InteractionType>#launch (when an interaction is launched)
com.apptentive#<InteractionType>#cancel (when an interaction is dismissed)
com.apptentive#app#launch (when the app enters the foreground, or the SDK is first initialized

following the app being terminated)
com.apptentive#app#exit (when the app enters the background)
com.apptentive#Survey#submit
com.apptentive#Survey#continue_partial (when a user continues with a survey after an action

sheet is displayed that explains that they will discard any answers that they entered)
com.apptentive#Survey#cancel_partial (when a user exits a survey after the aforementioned

action sheet is displayed)
com.apptentive#MessageCenter#read (when a previously-unread message in Message Center

is displayed to the user)
com.apptentive#AppleRatingDialog#request (when requestReview is called on
SKStoreReviewController)
com.apptentive#AppleRatingDialog#shown (when the above method call results in a review

request being presented)
com.apptentive#AppleRatingDialog#not_shown (when the above method call does not result in a

review request being presented)
com.apptentive#EnjoymentDialog#yes (when the user taps Yes in the Love Dialog)
com.apptentive#EnjoymentDialog#no (when the user taps No in the Love Dialog)
com.apptentive#NavigateToLink#navigate (when the SDK has opened a URL from a Note

button)
com.apptentive#TextModal#interaction (when the SDK launches an interaction from a Note

button)
com.apptentive#TextModal#dismiss (when the user taps the dismiss button in a Note)

Message Center
With the Alchemer Mobile Message Center your customers can send feedback, and you can reply,
all without making them leave the app. Handling support inside the app will increase the number
of support messages received and ensure a better customer experience.

Message Center lets customers see all the messages they have sent you, read all of your replies,
and even send screenshots that may help debug issues.

Note: Note: Message Center uses a QLPreviewController instance to display attachments, which
includes a default share sheet that allows saving images to the device’s photo library.

This feature requires a key to be added to the app’s Info.plist file under the “Privacy – Photo
Library Usage Description” key. We suggest setting the value to something like “This will
enable the Save Image feature for attachments.”

If this key is not present, iOS 15 devices will omit the Save Image option from the share
sheet. Versions prior to iOS 15 will crash (in development builds) or fail silently (in release
builds) if a photo library usage description is not set and the user chooses the Save Image
option from the share sheet.

Showing Message Center
Find a place in your app for a button that will launch Message Center. This will allow customers to
contact you with feedback, or questions if they are having trouble using your app, as well as allow
them to see your responses.

import UIKit
import ApptentiveKit

class SettingsViewController: UIViewController {

 // ...

 @IBAction func openMessageCenter(sender: UIButton) {
 Apptentive.shared.presentMessageCenter(from: self)
 }
}

Checking Unread Message CountChecking Unread Message Count
You can also check to see how many messages are waiting to be read in the customer’s Message
Center using Apptentive’s unreadMessageCount property. This property is compatible with Key-
Value Observing (KVO), so your app can monitor it and be notified when it changes:

var observation = Apptentive.shared.observe(\.unreadMessageCount, options: [.new]) { _, change in
 print("Unread message count changed to: \(change.newValue!)")
}

Attachments
Attachments are messages that you can send from the SDK programmatically, which will be
visible to you in the Conversation View, but will not be visible to your customers in Message
Center. They are great for sending contextual information or logs from rare crash events.

Hidden File AttachmentsHidden File Attachments

let fileData = try Data(contentsOf: fileURL)

sendAttachment(fileData, mediaType: "application/zip")

Hidden Image MessagesHidden Image Messages

let image = UIImage(named: "my image")

sendAttachment(image)

Hidden Text MessagesHidden Text Messages

sendAttachment("Error creating file: \(error)")

Presenting Message Center with Custom Data
You can attach custom data when presenting message center. Then, if a consumer sends a
message, your custom data will be associated with the message and visible in the Conversations
view in the dashboard. If the consumer closes Message Center without sending a message, the
custom data will not be sent to the dashboard (if you want to record data regardless of whether a
message is sent, consider using person or device custom data).

let customData = ["widgetID": 123]
Apptentive.shared.presentMessageCenter(from: self, with: customData)

As with person and device custom data, custom data must be a Dictionary with String keys
and values that are numeric, Boolean, or strings. Nested data (such as arrays and sub-
dictionaries) are not supported.

Configuring Push Notifications for Message
Center

When a representative of your organization replies to a conversation in Message Center, you can
configure your Alchemer Digital dashboard to send a push notification alerting your customer in
your app. The setup process involves uploading a pair of push certificates and private keys to your
Alchemer Digital dashboard, along with implementing a handful of methods in your app that
forward push information received by your App Delegate to the Alchemer Digital SDK and allow
the SDK to respond to local notifications on the device.

Overview of How Push Notifications Work in Message Center
Each time your app launches, it should register for remote ("push") notifications, as well as request
permission from the user to display notification banners and play notification sounds (the user will
not be re-prompted once they have allowed or denied permission). If remote notification
registration succeeds, your app should forward the device token to the Alchemer Digital SDK.

When you send a reply in the Conversations tab in the Alchemer Digital dashboard, a notification
request is sent to the Apple Push Notification Service (APNS) using the certificate that you
configured for authentication, and the device token that your app provided to the SDK to target the
device corresponding to the conversation.

The Alchemer Digital SDK has the capability for multiple accounts within the same app to
have separate, private conversations in Message Center. To allow this, remote notifications
are sent as "silent" (background) notifications.

When a remote notification is received, your app should forward the notification to the Alchemer
Digital SDK. The SDK first determines whether the notification is intended for the Alchemer Digital
SDK, and whether the currently logged-in account is the intended recipient. If so, it fetches any
new messages, and then displays a local notification banner once they have been downloaded.

If the user taps on the notification banner, your app will be launched, and the current
UNUserNotificationCenter's delgate object will be notified. If your app uses its own delegate
object, it should forward the local notification to the Alchemer Digital SDK for processing, so that
the SDK can present Message Center if needed. If your app sets the `Apptentive` instance as the
delegate, this will be handled automatically.

Creating Push Certificates
Currently the Alchemer Digital dashboard only supports the older certificate-based authentication
for APNS. First, if it isn't already configured as such, select your app identifier from the [list in
Apple's developer portal].

Once on the Edit your App ID Configuration screen, scroll down and check the checkbox next to
Push Notifications if needed. Then click the Edit button to either download the existing SSL
certificates, or create new ones, for the Development and Production push environments. To create
a new certificate, click the Create Certificate file and follow the instructions for creating a
Certificate Signing Request. Once complete, you can download the certificate.

https://developer.apple.com/account/resources/identifiers/list

Please note that the certificate signing request creation process will have created a private
key available in the Keychain Access app. If you download a certificate on a machine that
was not involved in creating the certificate, the private key may not be present, and is
required for the next step.

Exporting Push Certificates and Private Keys
After downloading the certificate, follow the steps under "[Export the client TLS identity from your
Mac]" to export both the production and development certificates from the Keychain Access app
on your Mac.

Setting up Push Notification Support in the Alchemer Digital
Dashboard
Navigate to the [Integrations section of the Settings tab in your app's Alchemer Digital
Dashboard]. Expand the Alchemer Mobile Push integration and upload the production and
development certificates. Then enter the password you chose for each when exporting them in the
previous step into the corresponding text box. You can choose to play the default sound or a
custom sound when a new message is received, and you can also configure an email address to be
notified when a problem is detected in the Alchemer Mobile Push integration. To finish the setup
in the Alchemer Mobile dashboard, use the switch to make the Alchemer Mobile Push integration
active, and click the Update button.Then continue with the steps below to enable push in your app
and connect it to the Alchemer Digital SDK.

Changes to Your App's Capabilities
Select your project in the Project Navigator in Xcode, and then select your app target from the
sidebar. Next, select the Signing & Capabilities tab and scroll down to Background Modes. Ensure
that the checkbox for Remote notifications is checked.

Changes to Your App Delegate
If your app doesn't currently use push notifications, you should make sure to register for remote
notifications, as well as to request permission from the user to display banners and play sounds in
response to a notification.

```func application(_ application: UIApplication, didFinishLaunchingWithOptions launchOptions: [UIApplication.Laun
chOptionsKey: Any]?) -> Bool {      ...      UIApplication.shared.registerForRemoteNotifications()    Task {        do {           
 try await UNUserNotificationCenter.current().requestAuthorization(options: [.sound, .alert])        } catch let error {        
    // Handle the error.            print("Error requesting notification permissions: \(error).")        }    }        // Configure the us
er notification center delegate if required. See next section.    UNUserNotificationCenter.current().delegate = Apptenti
ve.shared        ...        return true}```

Two additional methods need to be modified or (if your app isn't currently using push notifications)
implemented to enable push notifications in the Alchemer Digital SDK.

https://developer.apple.com/help/account/certificates/create-a-certificate-signing-reques
https://digital.us.alchemer.com/apps/current/settings/integrations


First, when a request to register for remote notifications succeeds, your app should forward the
device token to the SDK:

```func application(_ application: UIApplication, didRegisterForRemoteNotificationsWithDeviceToken deviceToken: D
ata) { Apptentive.shared.setRemoteNotificationDeviceToken(deviceToken) // In apps that use push for non-Alch
emer purposes, also forward the push token to the appropriate service(s). ...}```

Be sure to do this on every app launch, regardless of whether the device token value has
changed since the previous launch.

Second, when a remote notification is received by your App Delegate, forward the notification to
the Alchemer Digital SDK:

```func application(_ application: UIApplication, didReceiveRemoteNotification userInfo: [AnyHashable : Any], fetchC
ompletionHandler completionHandler: @Sendable @escaping (UIBackgroundFetchResult) -> Void) {    let handledBy
Apptentive = Apptentive.shared.didReceiveRemoteNotification(userInfo, fetchCompletionHandler: completionHandler)
        if !handledByApptentive {        // Handle the notification as appropriate and call the completion handler.                 
...                completionHandler(.newData)    }}```

The `didReceiveRemoteNotification(_:fetchCompletionHandler:)` method will return a Boolean
value indicating whether the notification was handled by Alchemer Digital SDK. If the method
returns `true`, no further action is needed (as the SDK will have already called the completion
handler). If the method returns `false`, your app should handle the notification as appropriate and
call the completion handler with the result. 

UNUserNotificationCenterDelegate Setup
If your app does not yet have an object acting as the delegate for the current
`UNUserNotificationCenter`, we recommend setting the `Apptentive` instance as the delegate
before your app finishes launching:

```func application(_ application: UIApplication, didFinishLaunchingWithOptions launchOptions: [UIApplication.Laun
chOptionsKey: Any]?) -> Bool { ... UNUserNotificationCenter.current().delegate = Apptentive.shared ...
return true}```

Otherwise, you will need to modify two methods in your app's
`UNUserNotificationCenterDelegate` implementation.First, allow the SDK to present a banner
when a user notification is triggered:


```func userNotificationCenter(_ center: UNUserNotificationCenter, willPresent notification: UNNotification, withCom
pletionHandler completionHandler: @Sendable @escaping (UNNotificationPresentationOptions) -> Void) {    let hand
ledByApptentive = Apptentive.shared.willPresent(notification, withCompletionHandler: completionHandler)        if !ha
ndledByApptentive {        // Handle the notification as appropriate and call the completion handler.            ...            co
mpletionHandler(.banner)    }```

Second, forward the user notification response (e.g. tap on banner) to the Alchemer Digital SDK to
be handled if needed:

```func userNotificationCenter(_ center: UNUserNotificationCenter, didReceive response: UNNotificationResponse, wi
thCompletionHandler completionHandler: @Sendable @escaping () -> Void) { let handledByApptentive = Apptenti
ve.shared.didReceveUserNotificationResponse(response, withCompletionHandler: completionHandler) if !handle
dByApptentive { // Handle the notification as appropriate and call the completion handler. ... completio
nHandler() }}```

In both of the above methods, no action is needed if the SDK's method returns `true` (indicating
that the notification was handled by the SDK), but if the return value is `false`, your app must call
the completion handler after responding to the notification.

Customer Information
Set Customer Contact Information
If you already know the customer’s email address or name, you can pass them to us to display in
the conversation view on your Alchemer mobile dashboard.

Apptentive.shared.personEmailAddress = <#Email Address#>
Apptentive.shared.personName = <#Person Name#>

Message Center provides dialogs that allow your customers to set their name and email as well.
Calling the above methods will overwrite what your customer enters. If you don’t want to
overwrite what they enter, you can check their values first, using
Apptentive.shared.personEmailAddress and Apptentive.shared.personName .

Custom Data
You can send Custom Data associated with a person’s profile that is using the app, or the device. In
particular, this is useful for sending a Customer ID and other information that helps you
understand and support your users better. Custom Data can also be used for configuring when
Interactions will run. You can add custom data of type String , Int , and Bool .

In general, Custom Data can be sent as Person Custom Data or Device Custom Data. However, if
sending a Customer ID, you must send it as Person Custom Data. For more on the benefits of

setting a Customer ID, see here.

After the Custom Data field has been set, it will appear on the targeting screen for any Interaction
within a few minutes. You may need to refresh your browser to see recent changes.

Apptentive.shared.personCustomData["CustomerID"] = "1234321"
Apptentive.shared.personCustomData["city"] = "Seattle"
Apptentive.shared.personCustomData["points"] = 500
Apptentive.shared.personCustomData["is_premium"] = true

Apptentive.shared.deviceCustomData["primary_account"] = "test@apptentive.com"
Apptentive.shared.deviceCustomData["user_count"] = 5
Apptentive.shared.deviceCustomData["full_version"] = false

Because the CustomData type is a struct , you will need to use these alternative methods in
Objective-C:

[Apptentive.shared addCustomPersonDataString: @"1234321", withKey: @"CustomerID"];
[Apptentive.shared addCustomPersonDataString: @"Seattle", withKey: @"city"];
[Apptentive.shared addCustomPersonDataNumber: @500, withKey: @"points"];
[Apptentive.shared addCustomPersonDataBool: true, withKey: @"is_premium"];

[Apptentive.shared addCustomDeviceDataString: @"test@apptentive.com", withKey: @"primary_account"];
[Apptentive.shared addCustomDeviceDataNumber: @5, withKey: @"user_count"];
[Apptentive.shared addCustomDeviceDataBool: false, withKey: @"full_version"];

Customer Authentication
If your app involves sensitive data and is likely to be used by multiple customers on the same
device, you can use Customer Authentication to protect a customer’s information after they log out
of your app.

Customer Authentication requires that you have authentication built into your app, and will also
require you to modify your server’s authentication code to pass authentication information back to
your app, and then to the Alchemer Mobile (ApptentiveKit) SDK. For more information on this
feature, see our Customer Authentication Configuration .

When not using Customer Authentication, the Alchemer Mobile (ApptentiveKit) SDK will still
function normally using the built-in safeguards of iOS, but information passed to the SDK will be
accessible to someone in possession of an unlocked device.

How we log a customer inHow we log a customer in
Your server will authenticate a customer when they log in. At that time, you will need to generate
a JSON Web Token (JWT). The JWT should contain the following claims:

A subject (sub) claim that uniquely identifies the customer
An issuer (iss) claim corresponding to your company
An issued-at (iat) claim corresponding to the date/time of issue
An expiry (exp) claim corresponding to the expiration date. Note that expiry dates are
capped at three days after the issued-at date.

http://help.alchemer.com/help/getting-started-with-alchemer-mobile
http://help.alchemer.com/help/alchemer-mobile-customer-authentication

The resulting JWT should be signed with the JWT Signing Secret in your app’s API &
Development page using the HS-512 algorithm.

Alchemer Mobile will securely manage the JWT. It is important to never reuse a JWT and
NEVER INCLUDE THE JWT SIGNING SECRET IN YOUR APP or anywhere it could be
accessed by unauthorized parties.

Logging a Customer InLogging a Customer In
The JWT will be a string. When your server generates a JWT, you will need to send it back to your
app, and then log in to Alchemer Mobile with it:

try Apptentive.shared.logIn(with: jwt) { result in
 switch result {
 case .success:
 // handle success case

 case .failure(let error):
 // handle failure case
 }

Logging a Customer OutLogging a Customer Out
You should make sure to log a customer out any time you invalidate the customers session in your
app. That means that when a customer explicitly logs out, you should also log them out of
Alchemer Mobile. When they are logged out after a certain amount of time, you should likewise
also log them out of Alchemer Mobile.

Apptentive.shared.logOut()

Note: If your customer has logged out of your app, but you don’t log them out of Alchemer Mobile,
their personal information may be visible to other app users.

Refreshing the JWT
Because of the limited time during which the JWT is valid, it should be periodically refreshed using
the updateToken(_:completion:) method:

try self.apptentive.updateToken(jwt) { result in
 switch result{
 case .success:
 // handle success case

 case .failure(let error):
 // handle failure case
 }
 }

Handling Authentication FailuresHandling Authentication Failures
If the JWT expires or otherwise becomes invalid, events, messages, survey responses and the like
will pause sending. By adopting the ApptentiveDelegate protocol, the Alchemer Mobile SDK can

https://be.apptentive.com/apps/current/settings/api

notify your app and give your it an opportunity to refresh the JWT using the aforementioned
method.

func authenticationDidFail(with error: Error) {
 print("Apptentive authentication failed with error: \(error)")

 MyAPI.getApptentiveToken(for: MyUser.current) { result in
 switch result {
 case .success(let jwt):
 Apptentive.shared.updateToken(jwt) { updateResult in
 switch updateResult {
 case .success:
 // handle success case
 case .failure:
 // handle failure case
 }

 case .failure(let error):
 // handle failure case
 }
 }
 }Logged Out Experience

When no customer is logged in, Alchemer Mobile public API methods will have no effect or in
some cases return an error result.

If you are using Message Center, and the button that launches it is visible in a part of your app that
your customers can access without logging in to your app, you should follow the Message Center
instructions above to only show or enable the button when Message Center can be shown.

Logging
To set the level of importance for events logged to the system log, set the logLevel static property
on ApptentiveLogger . The available levels are:

debug
info
notice
warning
error
critical
fault

Showing or Hiding Sensitive Information
There are three privacy levels for information logged by the SDK:

auto : This will print the information unreacted when the Alchemer Mobile instance’s
shouldHideSensitiveLogs property is false . The default value of this property matches the

behavior of private log messages.
private : This will hide the information unless a debugger is currently attached to the process,

as when debugging through Xcode.
public : This will always show the information.

Strings and objects logged by the SDK are marked .auto , and numbers and booleans are marked
.public .

Theming and Customization
There are several different options for customizing the look and feel of Alchemer Mobile
(ApptentiveKit’s) interactions.

Themes
The SDK will ordinarily apply a styling theme using Alchemer Mobile default colors alongside
system fonts and symbols. This theme is designed to look consistent across our iOS and Android
SDKs, but may differ from your app’s look and feel and the rest of the iOS system.

Survey using .apptentive theme

By setting the Alchemer Mobile's class’s theme property to .none (note: this must be done
before calling the register(with:completion:) method), the interactions take on a more native iOS
look and feel, but it will differ substantially from the Android SDK.

Message Center using .apptentive theme

Survey using .none theme

IMessage Center using .none theme

Setting the theme to .none may also provide an easier starting point for customizing the user
interface to your liking.

UIAppearance
With the use of the .none theme, the Alchemer Mobile (ApptentiveKit) interaction UI will pick up
certain UIAppearance overrides that your app has set (for example, navigation bar tint).

If an appearance setting in your app makes Alchemer Mobile (ApptentiveKit) interactions
unattractive or unreadable, you can use
appearance(whenContainedInInstancesOf: [ApptentiveNavigationController.self]) to make a corrective

appearance change to Alchemer Mobile (ApptentiveKit) interactions (specifically those, like
Message Center and Surveys, that use view controllers other than UIAlertController).

UIKit Extensions
For styling changes that aren’t amenable to UIAppearance, Alchemer Mobile (ApptentiveKit)
defines a number of extensions to common UIKit classes to allow setting colors, fonts, images, and
more. For more information, see our forthcoming Customization Guide.

Overriding InteractionPresenter
For particularly extensive customizations, we recommend subclassing the InteractionPresenter
class and setting your subclass as the value for Alchemer Mobile's interactionPresenter property.
You can override the methods that present each interaction type, instantiating your own view
controllers and presenting them as you see fit. A view model for each interaction is provided to
configure your view controllers for displaying the interaction and reacting to user input. More
information on this technique will be added soon.

Related Articles

