
Alchemer Mobile iOS SDK
Migration Guide
This guide is intended for developers who have been using the Alchemer Mobile (formerly
Apptentive) iOS SDK and are migrating to the version 6 of the SDK.

Prerequisites
Your app must have a deployment target of iOS 11 or later
For the existing version’s data to be migrated, your existing Alchemer Mobile SDK (formerly
Apptentive) must be version 4 or later.
A handful of features are currently unavailable (notably client authentication), and if using
them is a requirement for your app, you may wish to delay your migration until replacements
are in place. Please see the Release Notes for more information.
We recommend calling all Alchemer Mobile (formerly Apptentive) methods on the main
queue.

Quick Overview Video

 View how simple it is to migrate to ApptentiveKit (6.0 and up)

Update the Alchemer Mobile Dependency
Replace with Swift Package Manager
You can now use the built-in package management features of Xcode to add ApptentiveKit to your
app.

Choose File > Add Packages… and enter https://github.com/apptentive/apptentive-kit-ios in the search
field.

Don’t forget to remove the Alchemer Mobile dependency from wherever you were previously
including it.

Update CocoaPods
Open your app’s Podfile with your favorite text editor, and modify the entry for Alchemer Mobile
(ApptentiveKit) as follows:

Your browser does not support HTML5 video.

http://help.alchemer.com/help/alchemer-mobile-ios-sdk-release-notes

source 'https://github.com/apptentive/cocoapods-specs.git'
platform :ios, '12' # Minimum deployment target is 11
use_frameworks!

target 'My App' do
 # Pods for MyApp
 pod 'ApptentiveKit', '~> 6.0'

 # Be sure to remove or comment out the 'apptentive-ios' pod
 # pod 'apptentive-ios'
end

Then, in the same directory as your Podfile, run pod install in the Terminal app.

The new SDK requires an iOS deployment target of 11.0 and above, so please ensure your project
(and Podfile) is configured for that.

Please note that both old and new SDK pods being present may cause the app to crash.

Update Subproject
To update the Alchemer Mobile (ApptentiveKit) dependency as a subproject, start by removing the
old Alchemer Mobile (ApptentiveKit) subproject, and then clone or download the code from
https://github.com/apptentive/apptentive-kit-ios, and drag the ApptentiveKit.xcodeproj file into your
app project.

Update Framework
Download the latest ApptentiveKit framework from https://github.com/apptentive/apptentive-kit-
ios/releases, and use it to replace the existing version of Apptentive.xcframework in your app.

Update Carthage
Update your Cartfile to remove the previous entry (github "apptentive/apptentive-ios" >= 5.0.0) and
add github "apptentive/apptentive-kit-ios" >= 6.0.0 . Then run carthage update --use-xcframeworks . Don’t
forget to remove the old dependency in your target’s General tab in the Frameworks, Libraries,
and Embedded Content section and drag the ApptentiveKit.xcframework folder into that section
from the Carthage/Build folder.

Update Update import Statements Statements
Within your project, modify all import Apptentive instances to import ApptentiveKit within each
source file in which you plan to use the Alchemer Mobile SDK.

After this step, you should be able to build your app successfully using the new SDK, but you will
likely see some deprecation warnings.

Fix Deprecation WarningsFix Deprecation Warnings

https://github.com/apptentive/apptentive-kit-ios
https://github.com/apptentive/apptentive-kit-ios/releases

Registering the SDK
The register(with:) method is now an instance method, and has been modified to accept an
Apptentive.AppCredentials object as its first argument. The optional second argument is a

completion handler that is called when the SDK registration completes or fails.

import ApptentiveKit

func application(_ application: UIApplication, didFinishLaunchingWithOptions
 launchOptions: [UIApplication.LaunchOptionsKey: Any]?) -> Bool {
Apptentive.shared.register(with: .init(key: "<#Your Apptentive App Key#>", signature: "<#Your
Apptentive App Signature#>"))

 return true
}

Engaging EventsEngaging Events
If you trigger events now using a string literal, you can continue to pass it exactly as you do now
without any changes (example below).

Apptentive.shared.engage(event: "change_mode", from: self)

If you’re using a variable to store the event name, the engage now accepts an Event object as its
first argument, so you’ll need to explicitly initialize it as follows:

Apptentive.shared.engage(event: Event(named: eventName), from: self)

Engaging events with custom data is currently unavailable.

Support for engaging events with extended data has been permanently removed.

Person and Device Custom Data
The previous addCustomPersonData(_:withKey:) and removeCustomPersonData(_:withKey:) (and the
corresponding methods for device custom data) have been deprecated when used in Swift.

Instead, use subscripting the personCustomData and deviceCustomData properties.

Because these properties are a struct type, you must continue to use the older methods from
Objective-C.

Notifications
The individual notifications emitted by previous versions of the SDK have been replaced with a
single new notification: Notification.Name.apptentiveEventEngaged .

Your app can listen to this notification and then examine the values in the userInfo dictionary for
the following keys:

eventType : the extended name of the event, for example com.apptentive#Survey#submit

interactionType : the type of the interaction that engaged the event, or app if not applicable
interactionID : the internal identifier of the interaction that engaged the event, if applicable
eventSource : the source of the event, either com.apptentive (for events that are engaged by

the SDK itself) or local.app (for events that are engaged by your app)

For a complete list of internal events, see the integration guide.

Customer Authentication
The method signatures for customer authentication have been updated for Swift developers. The
completion handlers for logIn(with:completion:) and updateToken(_:completion:) now accept a
Result<Void, Error> parameter.

Also the authentication failure callback has been replaced with a delegate protocol
(ApptentiveDelegate) that calls authenticationDidFail(with:) the first time an authentication failure
occurs when sending a background request (such as an event, message, or survey response).

Customization
Customizing the styling of Alchemer Mobile UI elements has changed significantly. The
ApptentiveStyle protocol and ApptentiveStyleSheet class have been removed (although

placeholders are available to allow your code to build with warnings rather than errors).

Themes
The SDK will ordinarily apply a styling theme using Alchemer Mobile's default colors alongside
system fonts and symbols. This theme is designed to look consistent across our iOS and Android
SDKs, but may differ from your app’s look and feel and the rest of the iOS system.

By setting the Alchemer Mobile class’s theme property to .none (note: this must be done before
calling the register(with:completion method), the interactions take on a more native iOS look and
feel, but it will differ substantially from the Android SDK.

UIAppearance
With the use of the .none theme, the ApptentiveKit interaction UI will pick up certain
UIAppearance overrides that your app has set (for example, navigation bar tint).

If an appearance setting in your app makes ApptentiveKit interactions unattractive or unreadable,
you can use appearance(whenContainedInInstancesOf: [ApptentiveNavigationController.self]) to make a
corrective appearance change to ApptentiveKit interactions (specifically those, like Message
Center and Surveys, that use view controllers other than UIAlertController).

UIKit Extensions
For styling changes that aren’t amenable to UIAppearance, ApptentiveKit defines a number of
extensions to common UIKit classes to allow setting colors, fonts, images, and more. For more
information, see our forthcoming Customization Guide.

http://help.alchemer.com/help/getting-started-with-alchemer-mobile

Overriding InteractionPresenter
For particularly extensive customizations, we recommend subclassing the InteractionPresenter
class and setting your subclass as the value for Alchemer Mobile's interactionPresenter property.
You can override the methods that present each interaction type, instantiating your own view
controllers and presenting them as you see fit. A view model for each interaction is provided to
configure your view controllers for displaying the interaction and reacting to user input. More
information on this technique will be added soon.

Data that will be Migrated
The following data will be automatically migrated the first time that the new version of the SDK is
initialized, provided that the previously-integrated Alchemer Mobile's SDK was version 4 or newer:

Conversation credentials (identifier and token)
The number of times each event was engaged and when it was last engaged
The number of times each interaction was presented and when it was last presented
Person name, email address, and custom data
Device custom data
Random sampling data

The following data will not be migrated:

Events, messages, and survey responses that could not be sent because the device was
offline
The local cache of messages and attachments
Any data from SDK versions prior to 4.0

Related Articles

