
Android Quick Start Guide
This guide helps you quickly start using Alchemer Mobile 6.0+ 6.0+ in your Android app. For complete
documentation see the Android Integration guide.

System Requirements
minSDK version: 21 (Android 5.0)

compileSDK version: 31 to 33

Gradle version: >= 7.0.0

classpath 'com.android.tools.build:gradle:7.0.0'

Set up the Alchemer Mobile SDK
To install the SDK, add apptentive-kit-android to the dependencies block of your app/build.gradle
file, replace APPTENTIVE_VERSION with the most recent one.

repositories {
 mavenCentral()
}

dependencies {
 implementation 'com.apptentive:apptentive-kit-android:APPTENTIVE_VERSION'
}

For details on the latest SDK releases and past versions, see the Releases page on GitHub

Configure the SDK using ApptentiveConfiguration with your Alchemer Mobile App Key App Key and
Alchemer Mobile App SignatureAlchemer Mobile App Signature in your Application subclass. These values are available from the
API & DevelopmentAPI & Development section of the SettingsSettings tab in your Alchemer Mobile DashboardAlchemer Mobile Dashboard. For more
information on the optional ApptentiveConfiguration parameters, see the Alchemer
Mobile Configuration optional parameters section.

http://help.alchemer.com/help/android-integration-guide
https://docs.gradle.org/7.0/release-notes.html
https://github.com/apptentive/apptentive-kit-android/releases
http://help.alchemer.com/help/android-sdk-5-x-x-to-6-0-0-migration-guide

class MyApplication : Application() {
 override fun onCreate() {
 super.onCreate()
 val configuration = ApptentiveConfiguration(
 apptentiveKey = "<YOUR_APPTENTIVE_KEY>",
 apptentiveSignature = "<YOUR_APPTENTIVE_SIGNATURE>"
).apply {
 /**
 * Optional parameters:
 * shouldInheritAppTheme - Default is true
 * logLevel - Default is LogLevel.Info
 * shouldSanitizeLogMessages - Default is true
 * ratingInteractionThrottleLength - Default is TimeUnit.DAYS.toMillis(7)
 * customAppStoreURL - Default is null (Rating Interaction attempts to show Google In-App Review)
 */
 }
 Apptentive.register(this, configuration)
 }
}

If you didn’t already have a Application class defined in your app, you will need to create one
and add it to your Manifest.

Register Activity
With the re-write of the SDK, we leveraged a modern architecture using modules. This allows for
greater flexibility in where the engage method can be called from.

Now the current Activity needs to register to the SDK in order to show our Interactions in your
application.

Since this will need to be done for every Activity within the application, we recommend that you
implement this within a BaseActivity that your other Activities can extend from.

class MainActivity : AppCompatActivity(), ApptentiveActivityInfo {
 override fun onResume() {
 super.onResume()
 // Register the activity callback
 Apptentive.registerApptentiveActivityInfoCallback(this)
 }

 // Pass the current Activity
 override fun getApptentiveActivityInfo(): Activity {
 return this
 }

 override fun onPause() {
 // (Optional)Unregister the activity callback
 Apptentive.unregisterApptentiveActivityInfoCallback(this)
 super.onPause()
 }
}

Styling Alchemer Mobile

Alchemer Mobile will inherit your app’s styles by default. If you want to customize more, check this
article on our interface customization currently available and how the default interaction UIs look.

Prerequisites
If you haven’t already, you will need to update your app to use Material Components and
AndroidX

This should be a simple process and is highly recommended.
There are Bridge themes available if you cannot inherit them from the
MaterialComponents theme.

If you CANNOTCANNOT use a Material theme, you can add all the colors that we use so that your
Alchemer Mobile interactions are still styled correctly.

At the very least, colorSurface and colorOnSurface are required to avoid errors.
Adding colorError is also recommended to avoid the non-material default of an orange
error color.

Engage Events
Events record user interactions. You can use them to determine if and when to show an interaction
to your customer. At a minimum, you should include 20 – 50 Events in your app to start taking
advantage of Alchemer Mobile, but for now, let’s just create one.

Events can be added almost* anywhere in the App. A few good places would be when an
Activity comes to focus, on a button tap or when the App encounters an error.

* Avoid calling engage events in your Application class or before the SDK has a chance to
get fully registered.

// Engaging
Apptentive.engage("my_event")

// Engaging with callback (optional)
Apptentive.engage("my_event") { result ->
 when (result) {
 is EngagementResult.InteractionShown -> { /* Interaction was shown */ }
 is EngagementResult.InteractionNotShown -> { /* Interaction was NOT shown */ }
 is EngagementResult.Error -> { /* There was an error during evaluation */ }
 is EngagementResult.Exception -> { /* Something went wrong */ }
 }
}

Add Custom Data
You can send Custom Data associated with a person’s profile that is using the app, or the device. In
particular, this is useful for sending a Customer ID and other information that helps you
understand and support your users better. Custom Data can be used for configuring when
Interactions will run. You can add custom data of type String , Number , and Boolean .

http://help.alchemer.com/help/android-interface-customization
https://material.io/develop/android/docs/getting-started
https://developer.android.com/jetpack/androidx/migrate
https://material.io/develop/android/docs/getting-started#bridge-themes
https://learn.apptentive.com/knowledge-base/android-interface-customization-2/#apptentive-style-resources:~:text=for%20more%20info.-,Important%20styles%20we%20inherit,-We%20are%20following

Apptentive.addCustomPersonData("customer_id", 1234567890)
Apptentive.addCustomPersonData(“is_premium”, true)

After setting your Customer ID and other custom data, you can choose which field is your
Customer ID in the Alchemer Mobile Platform.

If you are interested in learning more about the Customer ID feature, please review this article.

Additionally, the customer’s name and email can be set by using the following APIs.

Apptentive.setPersonName("John Doe")
Apptentive.setPersonEmail("customer@abc.com")

Create Interactions
Now that you’ve created an Event, let’s see how to create Interactions and display them when the
Event is triggered.

In this example, we will see how to create a Survey and display it.

Go to the Surveys page.
Click “New Survey”.
Give the Survey a name, title, introduction, add a question, choose whether to end with a
Thank YouThank You message, and finally click Save & ContinueSave & Continue.
Choose Publish survey as an independent InteractionPublish survey as an independent Interaction .
Under the WhereWhere section, choose the Event main_activity_created (or whatever Event name
you used). If your app hasn’t connected to the server after triggering that Event, you will need
to add it manually at this point, by clicking Create new Event Create new Event on the Events page.
Near the bottom, check Allow multiple responses from the same personAllow multiple responses from the same person so you can display

http://help.alchemer.com/help/getting-started-with-alchemer-mobile
https://be.apptentive.com/apps/current/surveys
https://be.apptentive.com/apps/current/events

this survey more than once.
Click Save & Continue.Save & Continue.
Click Launch Survey.Launch Survey.
Finally, uninstall and then reinstalluninstall and then reinstall the app to ensure you have downloaded that newly
launched Survey from our servers.

Now, you will see this survey when you trigger the main_activity_created Event.

Add Message Center
Find a place in your app for a button that will launch Message Center. This will allow customers to
contact you with feedback, or questions if they are having trouble using your app, as well as
allow them to see your responses.

If Message Center is available, show a Button that will launch it when clicked. This example
assumes you have an Activity called SettingsActivity on that, you have a Button that you would
like to open Message Center with.

override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.settings_layout)
 val button = findViewById<Button>(R.id.message_center_button)
 button.setOnClickListener {
 Apptentive.showMessageCenter()
 }
 Apptentive.canShowMessageCenter { showMessageCenter ->
 button.isVisible = showMessageCenter
 }
}

Example App
Check out our Example App to see how Alchemer Mobile is integrated into it. Follow the
README.md for the setup.

MainActivity.kt shows how to engage all the interactions and styles.xml has the
configuration for all the cookbook designs.

Related Articles

https://github.com/apptentive/apptentive-kit-android/tree/main/apptentive-example
https://github.com/apptentive/apptentive-kit-android/blob/main/apptentive-example/README.md
https://github.com/apptentive/apptentive-kit-android/blob/main/apptentive-example/src/main/java/com/apptentive/example/MainActivity.kt
https://github.com/apptentive/apptentive-kit-android/blob/main/apptentive-example/src/main/res/values/styles.xml
https://learn.apptentive.com/knowledge-base/android-ui-cookbook-design-1/
http://help.alchemer.com/help/android-ui-cookbook-overview

