
Automatic Save and Continue
from Share Link

Scripting Solutions
Additional scripting solutions will be added in the future. Please reach out to Alchemer with
comments and suggestions on solutions you'd like to see via the link here.

Scripting and Other Custom Solutions
We’re always happy to help you debug any documented script that is used as is. That said,
we do not have the resources to write scripts on demand or to debug a customized script.

If you have customization ideas that you haven't figured out how to tackle, we're happy to
be a sounding board for Alchemer features and functionality ideas that might meet your
needs. Beyond this, check out our Professional Services; these folks have the scripting
chops to help you to achieve what you are looking for!

GoalGoal
Automatically include a Save and Continue function without requiring a respondent to enter an
email address. When following the survey Share Link, respondents return to the in-progress
response or the Thank You pageThank You page if their survey response is completed.

Effort:Effort: ✔ ✔ ✔

Special Considerations
This is a cookie-based solution with the following characteristics and keys for success:

Functions when a respondent uses the same computer and browser.
A response is created as soon as the Share Link Share Link is clicked.
If two respondents share the same computer/device they will not be ablewill not be able to create multiple
responses.
To allow a respondent to start a new response they can open an incognito window, clear
cookies, or use a different browser/computer.
The survey has a slight delay displaying the first page.

SolutionSolution
 Step 1: Add CSS

11 .. Add the following CSS to via the Style tabStyle tab in the top toolbar when editing a survey. Click Style >Style >
HTML/CSS EditoHTML/CSS Editor (found in lower right side of the page) > Custom CSS. (found in lower right side of the page) > Custom CSS. Paste in the
following code on the CSS Tab::

.hide-page {
 visibility: hidden;
}

 Step 2: Setup first page of survey

1. On the first page of the survey, select the edit penciledit pencil found at the top right of the page:

 2. On the popup window that displays, select the Layout tab. Layout tab. Paste in hide-pagehide-page in the CSSCSS
Class Name fieldClass Name field

3. Copy the script found below and paste it into a Javascript Action on the first page:

/* Alchemer v01

 Automatic Save and Continue, return user to their existing response.

 Documentation and updates: https://help.alchemer.com/help/automatic-save-and-continue-javascript

 How it works:

 -- First time the Share Link is accessed:
 - create a sguid, save as a cookie, start a new response with that sguid
 - See 'sguid' documentation: https://help.alchemer.com/help/sguid-the-url-variable

 -- Second time the Share link is accessed:
 - check if there is a sguid cookie, return to that reponse

 - check if there is a sguid cookie, return to that reponse
 - add URL variable returned-to-session=true

 -- Responses use a URL variable is in the form:
 sguid-1234557=dfERgsd1223dfreGER
 where 1234567 is the survey ID and a 25 character random code serves as the SGUID

 -- DEV NOTE: Setting the first page to "sg-hide" causes problems when clicking Back
 from the 2nd page.
 */

// *****************************
// ** No changes needed below **
// *****************************

'use strict';

document.addEventListener("DOMContentLoaded", function() {

 const LOG = false

 /***
 * Prepare browser to create a new response or return to user's existing response
 * on next reload() by adding sguid URL variable. Pushes to window.history.
 *
 * squid {string} the respondent's sguid
 * returningToSession {t/f} are we returning to an existing session
 */
 const updateURL = (sguid, returningToSession) => {
 if (LOG) console.log(`setup url refresh with sguid = ${sguid}, returningToSession = ${returningToSession}`)
 var newurl =
 window.location.protocol + "//" +
 window.location.host + window.location.pathname +
 '?sguid=' + sguid +
 ((returningToSession) ? '&returned-to-session=true' : '')
 window.history.pushState({ path: newurl }, '', newurl);
 }

 /***
 * Get a variable from the URL
 *
 * name {string} name of URL variable we're looking for
 * return {string/null} the varaible value or null
 */
 const getUrlParam = (name) => (new URL(window.location.href)).searchParams.get(name)

 /***
 * Create a random code to serve as a unique sguid
 *
 * length {int} length of the sguid to create
 * return {string} random sguid
 */
 const createSguid = (length) => {
 var result = ''
 var chars = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789'
 for (var i = 0; i < length; i++)
 result += chars.charAt(Math.floor(Math.random() * chars.length))
 return result
 }

 /***
 * Get the survey ID
 *
 * return {string} the survey ID
 */

 */
 const getSID = () => SGAPI.surveyData[Object.keys(SGAPI.surveyData)[0]].id

 /***
 * Get the survey's sguid variable name
 *
 * return {string} the cookie name in the form: sguid-1234567
 */
 const getSguidCookieName = () => 'sguid-' + getSID()

 /***
 * Get a cookie value
 *
 * name {string} case-sensitive name of cookie to get
 * return {string/null} cookie value or null
 */
 const getCookie = (name) => {
 let rawArray = document.cookie.split(';')
 for (let i = 0; i < rawArray.length; i++) {
 const pair = rawArray[i].split('=')
 if (pair[0].trim() === name) {
 return decodeURIComponent(pair[1].trim())
 }
 }
 return null
 }

 /***
 * Set a cookie value
 *
 * name {string} case-sensitive name of cookie to set
 * value {string} value to set
 * daysToLive = 365 {int} how long should cookie live
 * return {string/null} cookie value or null
 */
 const setCookie = (name, value, daysToLive = 365) => {
 // Encode value in order to escape semicolons, commas, and whitespace
 var cookie = name + "=" + encodeURIComponent(value) + "; max-age=" + (daysToLive * 24 * 60 * 60)
 if (LOG) console.log("adding cookie = ", cookie)
 document.cookie = cookie
 }

 /***
 * Show the current page by removing hide-page css classname
 */
 const showPage = () => document.querySelector('body').classList.remove('hide-page')

 /***
 * main()
 */

 const urlSnc = getUrlParam('snc')
 // Don't do anything if this is an Edit Link
 if (urlSnc) {
 if (LOG) console.log("Returning to existing response via an Edit Link")
 showPage()
 return
 }

 const urlSguid = getUrlParam('sguid')
 let cookieSguid = getCookie(getSguidCookieName())

 if (urlSguid && urlSguid === cookieSguid) {
 if (LOG) console.log("We're on the current response!")
 showPage()

 showPage()
 } else {
 if (LOG) console.log("Preparing to reload page")
 // if this is a new response create a sguid for it
 if (!cookieSguid) {
 if (LOG) console.log("-- creating a new sguid")
 cookieSguid = createSguid(25)
 setCookie(getSguidCookieName(), cookieSguid)
 updateURL(cookieSguid, false)
 } else {
 if (LOG) console.log("-- returning to existing response")
 updateURL(cookieSguid, true)
 }
 location.reload()
 }
})

Related Articles

